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ABSTRACT

High performance elements are simple finite elements constructed to deliver eng_-

neering accuracy with coarse arbitrary iric_. Thk paper k part of a series on the variational

founda_ious of hlgh-performance elements, with emphaak on plate and shell elements con-
structed with the free formulation (FF) and assumed n_ural strain (ANS) methods. In the
present paper we study parametrised variational pr_ciples that provide a common founda-

tion for the FF and ANS methods, as well as for a combination of both. Prom this unified
formulation a variant of the A_S formulat|on, called the assumed natural devla_oric strain

(ANDES) formulation, emerges as an important special case. The first ANDES element: a

hlgh-performance 9-dof triangular Kb'chhofl" pla_e bending element, is br_fty described to
illustrate the use of the new formulation.

1. INTRODUCTION

For 25 years researchers have tried to cousta'uct "best" _uite element models for

problems in structural mechanics. The quest appeared to be nearly over in the late 1960s
when high order displacement elements dominated the headlines. But these elements did

not dominate _the marketplace. The overwhelming preference of _n_te element code users
has been for simple e_e_at_ 0sat _e/_eer en_nesr_ng ar.cts_cy to_tJscoarse _shes. These

will be collectively called As'¢h per/ormance e[cmen_, or HI> elements for short.

I.I Attributes of lq'P E|ements

Approaching that genera] goal gives rise to a myriad of more concrete requirements,
which are supposed to he addressed in higher or leeser degree during element development.

Such requirements are listed in Table 1.

Some of these requirements are obvious. For example, low _or_on sens_6,d_/is

a consequence of trying to achieve satisfactory accuracy with arbitrary meshes. But other
items _sted in Table 1 ca]]for some explanation.



Table1. TargetRequirements for High-Performance Elements

• Simple: few freedoms, all physical, preferably at corners only

• Convergent

• Frame invariant

• No locking

• Rank sufficient: no spurious modes

• Balanced stiffness: not too rigid, not too fiexible

• $L,"eesesas accurate as displacemen_

• Low distortion s_nsitivity

• Mixable with other elements

• Economical to form

• Easily extench'ble to nonlinear and dynamic analysi_

• Effective local error estimator for mesh adaptation

The first and foremost requirement is that the element be u aimple as possible.
This k in sharp contrast to the "baroque FE period" of 1965-1975 that lauded luxuriantly
ornate elements and culmin_qi with the development of very complex models, including

elements with nonphysical degreee of freedom. One source of thle retrenchment has been
feedback from users or generai-purpo_ BJs/te element progran_. As use or these programs

expands to more engineers without deep knowledge of Swhat's inside the black box _ the
trend in finite element model construction has veered towards the "simplest elements that

will do the job." Further impetus is provided by the gradual realisation that high accuracy
of complex elements in linear elastoetatics does not necessarily carry over to dynamic and

nonlinear anaJysis.

The balanced shines8 requirement also deserves comment, h follows from the goal
of attaining reasonable accuracy with ¢oarme mrs/tea. Thin is illustrated in Fig. 1, which
shows a convergence study of a claesica] model problem: the bending of a simply-supported
square plate under a concentrated central load. The mesh contains 2 X N X N triangles

over a plate quadrant. A target "accuracy band" of -4-1% is taken, somewhat arbitrarily,

as representative of engineering accuracy for this rather simple probkm. The convergence
characteristics or several triangular elements are taken from the extensive study reported
in ROf. 2. Although most elements converge, some are too 8tiff whge others are too flexible,

and generally do not enter the accuracy band until the mesh is fairly refined (N _> 8). On
the other hand, the results labeled 'FF', obtained with a plate element based on the free

formulation (FF) discussed later, lie within the band for all meshes.
The ba]anced-etifnees requirement should not be confused with fast asymptotic

convergence for fine meshes. Simple elements cannot effectively compete with higher or-

der elements in thk regard, and are not effective in applications that demand very high
accuracy.What isimportant isAow good are the reaeltafor coarseme_hes.
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Flzure 1. Convergence study of several plzts bendln z triangular elements
as reported in Ref. 2. The PF results are from Ref. 8.

1.2 Constructin_ HP Elements

The search for h/gh-performan_ (HP) elements began seriously in the mid 1970s and
by now it represents an hnportant area of _te element research in sol/c] and structural

mechanics. Many ingenious schemes have been tried: reduced and selective integration,
incompatible modes, mixed and hybrid formula_ious, stress and strain projections, the free

formulation (FF), and the assumed natur_ strain (ANS) formulation. Many researchers
are presenly wor]dng to develop such elements. The common theme of the investigations is

I Aba_lor_ tl_ co._entio_ d_aplaeement )'orm_atio_

Several techniques used by researchers in their quest to build better elements are
item/sed in Table 2. It m_y be noted that many of these were introduced over 20 years ago.
But it is only recently that a concerted effort is made to combine several tools to produce

HP elements. For example, the present work draws on items 1, 2, 3, 8, 10, 11 and 12 of
Table 2.



Table3. Toolsof the Trade

Techniq,,e Year in_,d_o.d

1. Incompatible shape functions early1980e

2. Patch test 1985

3. _ixed and hybrid variational principles 1965

4. Projectors 1967

S. Selective reduced integration 1969

6. Uniform reduced intesration 1970

7. Assumed strains 1970

8. Enerlry balancing 1974

9. Directional integration 1978

10. Limit d_erential equations 1982

11. Free faf'mulation 1984

12. Assumed natural strains 1984

1,

1.3 Objective ofPresent Work

Th_ paper ispart ofa series(Refs.9-12,15-16)that studieshow severalHP element
constructionmethodJ can be embedded withinan e_.endedvariationalframework thatuses

parametrised hybrid functionak. Particular attention is focusea on merging the last two
items in Table 2.

The general plan of attack for this unification is flowcharted in Fig. 2. Box connec-
tions indicated with dashed lines are not dealt with in the present work. The variational

extensions, shown on the ]eft of Fig. 2, involve parametrisation of the conventional elastic-
ity functionals and treatment of element interfaces through generaliIations of the hybrid

approach of Refs. 20-23.
The e/_ectlve construction of HP elements re_/es on devices, sometimes clerisively

called"tricks"or %ariationalcrimes," that do not fita priori;n the classicalvariational

framework. The range oftricksspans innocuous collocationand/_nltedi_erenceconstraints

tomore drasticremedies such asselectiveintegration.Despitethek unconventionalnature,

tricksare an essentialpext of the constructionofhlgh-performance elements.Collectively

they representa fun-and-games ingredientthat keeps the derivationof HP _nlteelements

a surprisinglyenjoyabletask.

The present treatment "decriminalises" kinematic constraint tricks by adjoining
Lagrange multipliers, hence setting out the ensemble on proper variational foundations.

Placing formulations within a variational framework has the great aclvantage of supplying

the genera[ _rueture of the sti/_ness matrices and forcing vectors of high performance el-
ements, and of providing theoretical coherence for the systematic derivation of classes of

elements by a combination of techniques.
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Figure 2 Pro_m of att_.k for v_atlonal formulation of HP element4

2. THE ELASTICITY PROBLEM

Consider a linearly eL_tie k_dy under static loading tha_ occupies the volume V. The

body is bounded by the sur[ace ,9, which is decomposed into S : S_USt. Displacements are

prescribed on S,t whereas surface tractions are prescribed on St. The outward unit normal

on S is denoted by n _ _.

The three unknown volume fields are displacements u = u_, infinites/mal strains

• _ e_y, and stresses _ _ '_i. The problem data include: the body force field b - 6_ in V,

pre_:r_bed displacement_ _ _. _. on Sd, and prescribed surface tractions t _ L'4on St.

The relations between the volume fields are the strain-displacement equations

• = 21(Vu + VTu) = Du or e'i = _(u_,i + ui,, ) ;- V, (1)

the constitutive equations

¢ = Ee or _i = E_i*_e_l in I/, (2)

which will be a._eumed to be invertlble, and the equilibrium (balance) equations

-diver = D%r = b or _o.,i + _, = 0 inV, (3)



in which D ° -- -dlv denotes the adjoint operator d D -* _(V + _r).
The stre_ vector with respect to a direction defined by the unit vector v k denoted

as ¢, ffi r.v, or u._ ffi _.v$. On S the surface-traction 8trees vector/s defined _.

G. - r.u, or q._ ffi u_n_. (4)

With this defin/tlou the traction boundary conditions may be stated as

• . = E or _,;_; = _ on S., (s)

and the displacement boundary condltions as

u-a or _ffi_ o_ s.. (6)

8. NOTATION

3.1 Field Dependency

In variational methods of approximation we do not work ot course with the exact
fields th_ satldy the governing Eqs. 1-$ and S._, but with i_p_mtent (primary) fields,

which are subject to variations, and d_peadent (secondary, associated, derived) fiekk, which
are not. The approximation is determined by taking variations with respect to the inde-

pendent fields.
Following the notation introduced in Refs. 9 and 10, an in&epea,/znt/_ earled field

will be identified by z superpoaed tilde, for example _1. A dependent t_eld is identified by
writing the independent field symbol as superscript. For example, if the displacements are
independently varied, the derived Itraln and stress fields are

.- = ½(v + vT)_ = D_ ." = F_" = ED_. (7)

An advantage of this convention k that u, • and u may be reserved for the ezact fields.

3.2 _teljral Abbreviations

Volume and surface integrak will be abbrevi_.ed by placing domain-subscrlpted

parentheses and square brackets, respectively, around the integrand. For example:

L e

If f and g are vector/'unctions, and p and q tensor functions, their inner product over V is
denoted in the usual manner

(f,g)v d__.__ f.gu_/= _ f,O_ JV, (P,q)v de, _p.qJV =/vp,yq,y 8V, (9)

and similarly for surface integrals, in which case square brar._ets are used.

3.3 Domain Assertions

The notation

(. = _)v, [. = b]_, [. = b]_., [_ = bl_,, (_o)

is used to assert that the relation ¢ ffi _ i._valid at each point o/V, ..f, S_I and S¢, respectively.

6



St U S d

Figure S. Internal Interface example.

3.4

In §4-5 we construct hjbr_ war_st_ona/pt_ncip/sa in which boundary dkplacements d
can be varied independently from the internal displacememts u. These dlJplacements play

the role of Lagrange multipliers that relax internal d_p|acement continuity. "variational

principles contalnlng d _ be called d_plo_:emsnt-general;_ed, or d.generalJzed for short.
The choice of d as independent field is not varia£1onally admiss_le on $4 or St. We

must therefore extend the definition of boundary to include internal inter�aces collectively

designated as S_. Thus
s : s_us, us,. (11)

On Si neither dlsplaeements nor traction= are prescribed. A simple case is Rlustrated

in Fig. 3, in which the interface _ divides V into two subvolumes: V + and V-. An interface
such as S_ on Fig. 3 has two =side=" called S+ and S_, which identify Si viewed as boundary
of V + and V-, respectively. At smooth points of S_ the unit normak n + and n- point in

opposite directions.
The integral abbreviationJ of Eqs. 8-9 generalile as follows, using Fig. 3 for definite-

ness. A volume integral is the sum of integral= over the subvolumes:

(f)v + /,,_f (12)

An integral over $_ include= two contribution=:

d==d[ g+ dS + [ g- dS, (13)[gls,
Js : Js

where g+ and g- denotes the value of the integrand g on S+ and S_-, respectively. These

two va_]uesmay be d_erent if g is discontinuous or involves a projection on the normall.

The appearance of S_ is a natural consequence of use of finite eiements with discon-
tinuous d_p]acement_. Following a finite element discretication, the union of interelement

7



boundaries becomes S_. This boundary is generally nonphysical because it depends on the
discretisation.X

4. THE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are based on functionak of the form

n = u- P, (14}

where U charact_vizes the internal energy stored in the body volume and P includes other

contributions such as work of applied loads and energy stored on internal interfaces. We

shallcallU the ge_ral_ed atraimenergyand P the [orcin¢potznti_l.

The functiona_ considered in thissectioninclude independentlyearned d_pl#,ce-

ments. The _ ofdual functionalssuch asthe complementary energy are brieflycovered

in §5.5for completeness,but are not requiredin the finiteelement developments of§6f.

4.1 Generalized Strain Energy

The generated strain energy has the {ol]owing sCruccure:

u = _y_(a,.-),.+ A,(a,_,)_.+ j_(a.,,")v+ ½,._(,',i)v+._(,,'.,,')v+ ½y_,(,,".e')v
(is)

where ill through _ axe numerical coefficients.For example, the Hu-Washiau principle

is obtained by setting jx_ = -I, jls == 1, 3_ =z 1, all others being sero. The matrix
representation of the gener_ functional Eq. 15 and the relations that must exist between

the coeffic/ents are stucl/ed in §5.1.

4.2 H_brid Forcin_ Potentlalm

Vaxiat_n_ pr/nc|p]es of linear elastlclty are conJtructed by combining _he volume

integral of Eq. 1S with the forcing potential P. Two forms of the forcing potential, called
P'_ and _ in the sequel, are of interest in the hybrid treatment of interface discontinuities.

The d-generalised (displacement-general_ed) forcing potential introduces, as anticipated
in _3.4, an independent boundary displacement field d over S_:

P'(a,a.a)= +[a.,e- al,, + [e. + aI,,. (16)

The t-generallsed (traction generalised) forcing potential introduce_ an indepen-
dently varied traction displacement field F.over S_:

P'(a,a,_.)= ('b,e)v+ [_,e -,IIs,+ Ie,_Is,+ [_.,_Js,. (17)

The "conventional s form P_ of the forcing potential is obtained if the interface

integral vanishes and one sets [t = Gn]$. If SO _ and _ coalesce into pc, which retains
only two independent fields:

P_(_,a) = ('b,_)v+ [a.,e - als, + [e,_l_,,. (18)

2 _f ther_ are physical int_mal interfaces -- for example a sudden thickne_ or material change
it i_ common practice to select the mesh so that these natural interfacee are also interelement
boundaries.



4.3 Modified Forcin_ Potentiak

Through various manipulations and _umptions detailed m Ref. 10 the forcing
potential pd may be transformed to

P=(_,_,_) = _b,_)v + [=,,a]s,+ [_,_ - a]s. (19)

where the aB-important surface dislocation integral is taken over S rather than S_. One d
the assumptions k that dkplacement boundary conditions, Eq. 6, are exactly satisfied on
Sd. TEk expression of pd is used in the sequel. A similar technique can be used to adjust

P', but that modLqed formula will not be reqnired in what follow_.

4.4 Complete Functiona]s

Complete elasticity functionals are obt_ed by combining the generalised strain

energy with one of the forcing potentials. For example, the d and t generalised versions of
the HuoWuhisu functional am

n_, = u_, _pd, rrw = rJ., -_. (2o)

where Uw is obtained by setting _J2 = jLq == 1, J12 = -l, others sere, in F_I. 15.

5. MATRIX REPRESENTATION. OF ELASTICITY FUNCTIONALS

The generalised strain energy o( Eq. 15 can be prelented in the matrix form

aymm
(21)

The symmetric matr_

[i. Y== Y_=]
(22)

characterlze_ the volume portion of the variational principle. Using the relations • _ -- Ee,
¢= = ED_, e" =z E-xG, and • = = D_L, the above integral may be rewritten in terms of the

independent _elc_ a_

LS_oD _D_E _DrED J
(23)

' To justify the symmetry of J note, for _xampk, that jts(_,e')v = _=ysa(_,e')v +

=lj,=(.-, e=)v, and m on.



5.1 First Variation of Generated Strain Ener_r/

The first variation of Eq. 15 may be presented as

6_" = (Ae, 6a),. + (A., 6_),. - (,:... ,,', _,_),. + [.',., 6QIs, (24)

where
Ae = ixze" + jl2_ + j_se',

Ae = j_2a + _e' + _,sr', (25)
d = j_sa + _,," + _r'.

The L_t two terms combine with contributions from the forcing potential variation.

For example, if P -- pe the complete wtriztion of H a =_ U - pe il

an, = (Ae.aa)v + (_,, 8s)v - (dlv,' + b,6_)v + [-'. - E.a_Is, - [_- a, sa.]s,. (2e)

Using _ or ]_ does not change the volume terms. The first variations of n "_and

are studied in Refs` 9-11 for a more restrictive cla_ of/unctionab, namely FLy, The

Euler equations associated with the volume terms

•_e - 0, tt,r = 0, dlv d + b = 0, (27)

are independent of the forc/ng potential. A "weighted res|dual" interpretation of Eqs. 27 in

terms of the field equations is given in _5.4. For the moment we note that for consistency
of the Euler equat/ons with the field equations of _2 we mnst have Am -- O, A_r -- 0 and

u G if the assumed stresa and strain fiel_ reduce to the exact ones. Consequently

ill + j_2 + j,s = 0,

j,_+_+_=o,

jzs+_+_-l.

(2s)

Because of these constraints, the maximum number of independent parameters that
define the entries of J k three.

5.2 .Specific Funct|onals "

Expressions of J for some classical and p_rametrized vari&tional principles of elas-
ticity are tabulated below. The subscript of J is used the identify the functionals, which
are listed roughly in order of ascending complex/ty. The fie]_ included in parentheses after

the functional name are those subject to i_dependent variaZions in T/.

Potent|al energy (_):

:_ = o . 129)
0

Stress-_Lspla_ement Reissner, also called HeUinger-Reiemner, (_, ii):

_ = o . (_o)
0

Unnamed streu-dlsplacement functional listed on p. 116 of Re_. 18 (_r,_):

Jr_ = 0 .
- 0

(3_)

10



Q

I Hu-Washizu

0 Potential Energy

I placement
Reissner

S tress- Displacement

Y

Flzure 4 Graphical representation of the ffa_ functlonzk

Strain-d/splacement Reiuner-_ype as listed on p. 116 ot Re£ 18 (_, fi):

Itu-Wasbisu s (_, _, fi):

3S -- -1 .
1

(32)

[o_i!]ffw = -1 1 . (33)
1 0

One-parameter stress-displacement fan_ly (_,6) that includes Up, U_ and Ue as

special cases (Pets. 8-10)

if, == 0 . (34)
0 1-'I

One-parameter 8train-c_placement family (4, 6) that includes Up and Us as special

cases (pe_.9)

Jp = -_ _ . (3s)
fl z-_

3 There are several functtonak th=t carry thls na_ne, transform,_ble from one to another through
lntecr'_tlon by pa.--ts. That corresponding to _Jw |s the third form listed in _2.3 of ]_f. 24.

11



Two-parameter [amfly (_,(e,_) that includes U B and (f.: as special cases (Ref. 9):

J_, .. (1- p)_, + (1- 7)J, - Cx- p - 7)Jr

"--q(1 - p) 0 7(1 - P) "[ (36)
-- 0 --p(l - 7) p(1 -- 7) |.

•v(1- p) p(z - 7) z - p--1 + sp7]

Three-parameter Ca, p, 7) family C_, i, 6) that includes Uw and Urn.s as special cases

(r,_'. 9):

J.._.: ,, _T_, + (z - a)Jp,

La+ 7(1- p)(1- a)

--a a+'y(1-p)(1-a) l (ST)
a -- #(1 -- 7)(1 -- a) p(1- _) m.

p(z-7)(1- a) (1-P-7 +2p_)(1-a)J
The last form, which contains three independent parameterm, supplias all matri-

ces J that satisfy the constraint_ of Eq. 28. It ylelcb s_lacement f-anctionals for

a = D " 0, strain-d_placement functionale for a = 7 = 0, and three-field (stre_-strain-
displacement) flanctionalJ otherwise. A graphic representation of this functional in Ca, D, 7)

space is given in F_. 4.

The spec/al_ation "7= I, fl = 0 of 3ap-f is of particular interest:

J. - a . (ss)
0

The associated functional lrI. ud_ht be called the "ser,_..-alised" Hu-Wuhian func-
tions/ since it reduces to Jw for cz = I. But because of its special relation with the ANDES

formulation covered in §8-11, H. w_l be herein referred to u the ANDES functional.

5.3 E_nerSyBalencin_

A prime motivation for introducing the 3" coe_cients as free parameters is opti-

misation of finite element performance in the balanced-sti_nese sense of Table 1. The

determination of "_oest" parameters for specific elements relies on the concept of energy

balance. Let U(e) = _(Ee, e)v denote the strain energy associated with the strain field e.
If E is positive definite, {/(e) ;- nonnegative. We may decompose the generalised strain
energy into the following sum of strain energies:

.- cr = u(e') + w,Zt(e"- 8} + ,_Z:(_- e") + _U(e" - _'), (sg)
where _/j,(e") = Us is the usual strain energy, and 4

,o_= ½(3..+_-_+1), ._= |!,y.+_+_-1}, _ = ½(3..-_+y_-_). (40)

Eq. (39) is equivalent to decomposing J into the sum of four rank-one matrices:

[i°!] [i i] [i0i] [°i]J= 0 +rex - I +t_ I -- +toe 0 0 . (41)
0 0 -1 -1 0

Decompositions of this nature can be used to derive energy-balanced finite elements

by considering element "patches" under simple load eysten_us. This technique ;_ discussed
for the one-parameter functionais generated by J_ in Refe. 6, 8-11. It is important to note

that the j coef_cients _y vct_ from element _o element.

• As shown in §5.4, these coefficients m_y be interpreted u field-equation-residual welghts,
hence the notation. It k conjectured that for stability the j coefficients should be confined
so that tv_ _ 0, but this remains to be proven.

12



5.4 I@Lterpret_ion,_.Euler Eq._ions

Eqs. 27 gain phyeical meaning if they are rewritten U _

_e = ,_i (e" -- _) + ws(e 's -- e*) = O,

A,r : ,._(_ - ,,') + -2(*" - .') = o,
• - _ [.- + ,_(,,,'- .-) + ,,_(." - _)] .. -b,

(42)

where the _ are ziven by F_I.. 40. But e" - _ = E-x_- 8 = 0 _ well as _ - _ =

- FA --- 0 are repre_ntafious of the constitutive equations, Eqs. 2. L_ewise, W - G" sz

E(_ - I_) = 0 is & representation of the strain-dlsplacement equstions, F-xts. 1. Finally,
e" - e" - D_ - E-S_ = O, u well u @, - _ = 0, are combinations of Eqs. I-Z Th_

we conclude that the Euler equatious _e = 0 and _r == 0 are weighted form_ of the

k_ematic and constitutive feld equations. On the other hand, dtv _ +b = 0 k • weighted
combination of the equih'brium equations, Y._. 3, and the other two.

If the 3"coeflicientl are such that • weight vanishes (see also footnote 4), that partic-

ular field equ&tien drope out from the E_ equations and must be viewed ambeing sstlsfed
a pr/o_ For example, in the potential energy functional, wt == w2 - toe -" 0 and only the

equilibrium condition in terms of dr" remains in the Euler equations. Thk interpretation
points the way for constructing U of Eq. 15 by the method of weighted residuals.

5.5 Functionals without Independent Displa_ement_

The foregoing theory applies to functiona_ where the disp|acements u are indepeno

dently varied. Although this ca4e includes the more practically important functionale for
our purpoees, for completene_ we present here the general parametrisation of stre_etrain

functionak. Decompoee _" of Eq. I5 u r/e + U_, where rf_ contains the strain energy due
to displacement-derived s_ .....

_.= _._ +_," + ½_,,',e')vffi(d_,,',.),,-[,,'.,uh,. (,s)

If we now assume that the equl]ibrium equations dtv ir+b = 0 and traction boundary
conditions dr, = _ hold 4 prio_ rf,,may b_ dropped and we are left with the _eneraliaed

eomple,,_n_r_ e_ functional

Taking account of the a pc/or/conditions, the first variation becomes

_, = _,e" + y_ + e',_)_.+ (y_.+ y_,,',_a)v, (45)

and for consistency we must h•ve 3"Ix + 3.1_= -1, 3"x_+ 3_ --" 0. It follows that Ue may be
represented as in the matrix form of Eq. 21 with • 3 that depenc_ on a single parameter.

{,/, !]_, = _ . (4el
0

Here p = 0 gives the c_ica] principle of total complementary energy whereas 0 = 1
gives the functional N(_, _) listed on p. 117 of Ref. 18.

6. FINITE ELEMENT DISCILETIZATION

In this section assumptions invoked in the _nlte element dlscretisation of the func-

tional IIa for arbitrary 3 are ata_ed. Following usual practice in finite element work, the
components of stresses and strains are arranged as one-dimensional arrays whl]e the elastic

moduli in E are arranged as a square symmetric matrix. In the sequel, and unless otherwise
noted, we consider an indieid_ element of volume V and surface $ : St U S,_ U S(, where

-$_ is the portion of the boundary in common with other element_.
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6.1 Boundary Displacement Assumption

The boundary displacement mmumption is

{a=  ,rfls. (4"0

Here matrix 1W,_collectl boundary shape functions for the boundary d_placemente
d while vector _v collects the avkible" de_ees of freedom of the element, _ called the

conifers. These dkplacements must be unique on common element boundar|es. This

continuity condition is met if the displacement of a common boundary portion is uniquely

speci_ed by de.sea of freedom located on that boundary. There are no derived fields
mmocinted with &

8.2 Internal Displacement A_umption

The displacement auumption in the interior of the element t.

= (45)

where matrix N. collects the internal displacement shape functions and vector q collects
generalLsed coordinates for the internal displacements. The admumed _ need not be cootin-

uous acro_ interelement boundaries. The displacement derived fields

(e _' = DNq = Bq)v, (Gt' = EBq)_.. (49) •

To link up with the FF and ANS formulations, we proceed to break up the internal

displacement field as follows. The assumed _ is decomposed into risdd body, constant
strain, and higher order displacements:

= N, CL.+ N, qc + Naqa. (SO)

Applying the strain operator D = ½(V+V T) to _ we get the associated strain field:

e" = DN, q, + DN_qc + DNaqLa = B,q, + Bcqc + Bach. (51)

But B. = DNr vanishes because N. cont.only rlgid-body modes. We are also

free to select Be = DN_ to be the identity matrix I if the generalised coordinates qc are
identified with the mean (volume-&veraged) swain values _-m. Consequently Eq. 51 simplifies
to

e" = _" + eT, = _' + Baqa, (52)

inwhich

q, = (Bh)v= O, -(53)

where u = (1)v is the element volume meuure. The second relation is obtained by integrat-

ing both sides ofEq. 52 over V and noting that q_ is arbitrary. It says that the mean value
of the hlgher-order dlsplacement-derived strains (also called the de_ator_c displacement-
derived strains) is sero over the element.

6.3 Stress Assure. ptlon

The stress field wRl be assumed to be co.rant over the element:

(a = _v. (54)

This assumption issufficientto constructhigh-performanceelements based on the

freeformulation (FF) developed in Refs.4--8.AJ discussedin ReL 11, the inclusionof

higher order stressmodes (devia_oricstresses)iinEq. 56 iscomputationally effectivei[

thesemodes are divergencefree,but such a requirement makes extensionto geometrically

nonlinearproblems all,cult.The only derivedfieldis

(e"= = _(55)
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8.4 Strain A_ptions

The usumed strain field _ k split into a mean constant strain K and a h_her order

•_ation (the _to_ s_ra_ns):

(a = _ + ,, = • + x,o)v, (58)

where _ - (_)v-/v, mata_x _ collect_ devlat_rk strain model wlth mean sero value over
-" the_lement:

(x,)v = o, (sT)

and • collectJ the corruponding strain mode amplitudes. The only derived Geld b

(,_ = _ = _ + EX_a)v. (58)

7. UNCONST_ FINITE ELEMENT EQUATIONS

For simpllci_y we shall assume tha_ all elas&ic modu]i in E are coaJtoa_ over the
element. Inserting the above assumptions into n 4 with the modified forcing potential

of F,q. 19 we obtain & quaAratk a]gebralc form, which k blo_-sparse on account of the

conditions stated in Eqs. 53 and 57. Rendering th_ form stationary yields the Rnlte element

equations

j11vl -I jl_vI 0 -I'_ jlsvI-I'._ -PI I.r'

jl2vI ,_vE 0 0 .bvI 0 0
o o :'_K_ 0 0 :_B. r 0

-P, 0 0 0 0 0 0

j13uI- P, _suI 0 0 _,_E 0 0

--Ph 0 jlsR 0 0 _sK_h 0
L 0 0 0 0 0 0

n

, q.
r

qa
, Y

0
0
0

! f_h

f_

where .-

]{_, =. (B£EB_,)v =, K_h, _-" (A_F._)v - KL, a ----(B_EA_)v,

L = Iz_L],, P, =
Jr, = (N,_b)v, _ = (N_b)v, _, -- (NIb)v, f. -= [N_[}s,,

in w]lJr_ _T_ denotel the projectlon of shape functions l_Ta on the exterior normaa n, and

similarly for N,, Ne and Na. Tho_e coel_cient matrix entr_em thaZ do not depend on the
3"coel_cients come from the last boundary term in Eq. 19.

7._

Application of the divergence theorem to the work of the mean stress on • u yields

(_,e')v= (_,_"+ B_)v = ,,_r_,,+ _r(B_)v,_ = u_r_,,
(6z)

= [_,,,_]s= I_,,,N,q,+ N,a"+ Nh,_,]_= _r(p.q,+ p,_.+ Phi).

Hence P, = 0, Pc = uI, P_ = 0, and the element equations shnpHfy to

ju_E -_ j_vI 0 0 (Yzs- l)ul 0 L T"

Y_s_I _-_uE 0 0 _._ul 0 0
o o _,_K_ 0 0 ._R r o
0 0 0 0 0 0 0

(jz:_ - 1),)I y_vI 0 0 3_'_E 0 0

0 0 _R 0 0 j_K_h 0
L 0 0 0 0 0 0

V] _0_
0

t I 0 1
I

4,. ,=_ _, _. (62)

,J _f,_ -.
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The simplicity of the P matrices is essentially due to the mean-plu_devia_or splitting

of Eq. 52 for • u. /f this decomposition is not enforced, Pr = 0 but Po = (B,)v = uB_ and

P_ = (B_)v.

S. KINEMATIC CONSTB.AINTS

The "tr/dLs" we shall consider here are _m4ti¢ ¢o_tmin_ that play a key role in

the development o/high-performance FF and ANS elements. These are matrix relations be-
L_ween kinematic quantities that are established _ndepen_ntly of the variational equations.

Two types of re]ations will be studied.

8.1 Constraints Between Internal and Boundar_ Displacements

Relations ]inking the genera]J_ed coordina_e_ q of Eq. 48 and the connectors y were

introduced by Bergan and cowor]cerz k conjunction with the free formulation (FF) ot Finite
elements (see ReL 5). For simplicity we shall aumume that the number of freedoms in v and
q is the same; removal of this restriction is studied in PveL 1L By collocation of u at the

element node points one easily establishes the relation

v -- G_ + Gcq_ + Gho.a ==G_ (_)

where G is a square transformation ma_ix that will be assumed to be nonsingular. On
inverting this relation we obtain

q = G-t.== Hv,

t Jca _HaJ

The following relations between L (defined in Eq. 60) and the above submatrices

hold as a consequence of the indlv/dual element test described in §0.3:

Lr(;:, = o, LrU. = vl, vH. ==Lr. (0s)

It the splitting o/Eq. 52 is not enforced, however, the last two become

Since P, = vB_, these relations coalesce (see Re/. 5).

8.2 Constraints Between Assumed Deviatorlc Strai_ and Boundar_ Displacements

Constraints ]inking _ to v are of fundamental importance in the assumed natural

strain (ANS) formulation. The effect of these constraints in • variational framework is
analysed in P,efs. 15 and 16. In the present study we depart from previous work in that
O_y Me _t_i_for_c stra_r.a_ ed, 6re _._me_ _t_]_d _O Y _o_ere_s the meaa _tra_ _ Gre

obtained :ar_nt_o_[y. Consequently we shah postulate the following relation between
assumed dev_,tork strain amplitudes and nodal displacement connectors:

• = q_,, (e7)

where Q is generally a rectangular m_rlx determined by collocation, least squares or
other fitting methods. An example showing the construction of Q is given in §11.4. The

individual element test described in §9.3 requires that Q be orthogonal to _r and (_¢:

qG, = o, qUo = o. (_s)
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8.3 Limitation principles

Strain assumptions made concurrently with displacement assumptions are confined

by Iimi_xtioa prlacipies similar to those stated by Fra_ijs de Veubeke for stress-<]isplacement

mixed e]emente (ReL 13). This issue was discussed in ReL 15 for a more restricted strain-
displacement hybrid formulation. Limitation principles for the genera/formulation pre-
sented 1ere remain to be studied.

9. VISIBLE STIFFNESS EQUATIONS

On enforcing the constraints a = Qv, o_ = H,v, q_ = ][_v 1= v-XLTv, and

qh = Hhv, through Lagrange mult|pl/er vectors Ae, A,, _a, and _a, respectively, we get
the au_ented Kuite element equat/ons

ooo°++oooooo,oo 1", j°oO
0 0 0 - o,, I'+,

++.0+oo0o ,°0+.+o+o°0 +++• _ ,q_ = f+_ .
0 O 0 0 0 0 0 0 ,1.

O - 0 0 0 0 o 0 H.r/ .X.

0 0 O H0. j _.
0 0 0 _I 0I O ,0 0 0 -- 0 0 0

,. ,.. o o o o o q,,.r.,-._.,, ,,, t.,..
(++',

Condensation of all degrees of freedom except v yields the vls_le s element st_ness

equations
Xv = (L + F+.)v = t, (70)

where

lh = v-lLEI, r, (71)

x_ = ,_m'_'_,,,,,;m. + .,.%('m'_nq+ q_R.r H,,,)+ _,,qrK_q, (72)

r v-_Lrr,. + H_t,+. (++)f= f. +H,t+, +

.Following the nomenclature of the free formulation, we shall call _ the bas/c 8h_-
n_a rnatr_ and Ka the higher order ah'_u nmtri_

9.1 Relation to Previous HP Element Formulations

If 3 = 3, of Eq. 33, _a =ffi1 - % 3_ =" J_s =' O, and we recover the scaled free

/orm_at_o_ stiffness equations considered in RefJ. 6, S and 1_.

Ks = (I - "I)HaTK,aHs, I - _ > 0. (74)

On the other hand, if we take 3 = Ja as given in Eq. 38, _ = c_, ._s = _ " 0 and
we obtain

x_ = _qrK_q, _,> o, (TS)

which _s eL'nilar to the st_ness produced by the ANS hybrid variationa/formulation studied
in Reds. 15--16, in which the forcing potential _ was used instead of pal. The variant of AN$

s The q_zllfler vi_b]z emph_,L_u that these are the stiffness equations other elements esee',

and consequently are the only ones that matter Insofar as computer |mplementat|on on •
dispLacement-based finite element program.
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consideredhereinwillbecalled the assumed n_hJml de_s_ strain (ANDES) formulation
in the sequel. The name is apt in the sense that what k being assumed are devlatorlc rather

than total strai_, and that this assumption only affects the higher order stiffness.
But the term with coefl_clent _s in Eq. 72 is new It may be viewed amcoupling the

FF and ANDES formulations. It is not known at this time whether Ecis. 70-73 represent

the most general structure of the visible stiffness equations of HI> elements.

9.2 l_cover_r of Element Fields

For simplicity suppose that the _y foresj ean_h and so do fqv, f_ and fqh on
account of Eqs. 60. If v is known following a finite element solution of the ueem]_led
system, solving Eqs. 69 for the internal degrees of freedom yields

=v-XLTv, _=E'_, a=Qv, q,=H,v, b"=_, qh=Hs.v,
(Te)

It is seen that the mean strains 7, b4' and _' = E-s_ coincide, and of course so do

the mean stresses. But if the body forces do not vankh the mean stresses and mean strains
recovered _m _erent fe]_ win not generally _ree.

It is also worthwhile to note that a nousero La_'ange multip]ier vector flags a devi-

ation of the associated fields from the tar_tio_l_ co,teat fields that would result on
using the unconstrained Eqs. 62 w_thout Itr_.]_.

9.3 The Individual Element Test

To conclude the genera] formulation we investigate the conditions under which HP

elements based on the foregoing setting pass the individual element test o_ Bergan and
Itanasen described in Rds. 3-6. To carry out the test, assume that the afree t_oatin_'

element s under sero body forces k in a cofl_t_nt _teeu _t_te G0, which o_ course is also the
mean stress. Insert the following data in the le_hand side vector of Eq. 69:.

Y--Uo==_ "_', _=E-IGo, a_==0, _L.--arbltrsry, e_=b_'_E-XY0, o.t=0 ,

A,=.0, A, ffi0, A,=-0, As--0, v=,C;,o_+G,F'f_,o.,+G,E-S¢o.

Premultiply by the coe/_qcient matrix, and demand that aH terms on the rlght-hand
side vankh but for f, == I,_ro. Then the orthogona]ity conditions listed in Eqs. 65 and

68 emerge. This form of the patch test is very strong, and it may well be that relaxing

circunmtances can be found for specific problems such as sbelk.

I0. DISCUSSION _ . " .....

At this poin_ it is useful to recapitulate key points of the previous development, and
to connect this mater/a] with some of the techniques o_ Table 2. The ch[e_ property ol_HP

elements constructed with present methods k the decomposition o_ the element stiffness
equations displayed in Eq. 70; a property that of course subsists at the as#embly level

The basic stiffness matrix hu a _n(eer#alcharacter:, as no.coef_cients 3"appear in

Eq. 71, clearly F_ is independent of specific vaziational principles. Given the constant stress
state introduced in Eq. _4, K_ depends only on the assumed boundar_/motious. It can be

constructed (and programmed) once and for all for each element type. As emphasised in

ReL 5, the main function of Kb is to provide coneer_s_ce.
The higher order sti_neas given in Eq. 72 serves two other (unctious: _t_Si/it_ and

a_e_mc_. The basic sti_ness is generally rank-defcient _ because its rank cannot exceed

Mathematically, the entire element boundary k traction-specified, i.e., S _ S,.

1, Except in simplex elements, for which K = Ks.
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that ofE; thus &key function of Kh is to stal)tl_e K by raising its rank to the correct one.

The second function, which has gained importance in recent work, is to increase solution
accuracy for coarse grids. Here is where the 3"coefRcient_ play the important role-noted

in §5.3. TTseu ¢o_c_c_n_ muy va T/ram ¢[en_nt to dement, despite the fact that this
variation implies that the var_ional principle changes from one element to another. Thus

the "element m/xab/lity j requirement of Table I is fulled without tears.

10.1 The Free Formulation

The present methodology was _tial]y pursued to justify vari_tionally the original

FF (_/ -- O) of Ref. 5 as well as the scaled FF ('I _ 0) of Rd_. 6-8. Thus it _ not
s_'prising that those element construction techniques fit naturally in the present variational

framework by simply taking 3 = Jr- The extended FF described in Re/'. 11 aims to
remove the restriction that the dimension of vectors q and v be the same. One of the

techniques advocated to allow dlm(q) > dlm(v) involves extending Eq. 54 with deviatoric
stress assumptions, and thus requires a generalization of Eq8. 59 and 62. Whether such a
generalisation is practically worthwh_e is unclear at this time.

10.2 The AN$ Formulation

The conventional ANS formulation u presented in Rofs. I and 19 constructs total

strain fields _ (not neceesar_ integrable into displacements u') gaged through generalized
stra_ coordinates • as • = An. These coordinates are eventually ]/nked to the connectors
v via matrix expressions of the form • ---- Qv, lead_g to an element stiffneas of the form

K = QrK_sQ, where ]_, is the genera]]steal stiffness in terms of a. T_e restriction to

deviatoric strains in §6.4 is motivated by two interrelated lractore: (a) the strain-assumed
stiffness _flows _ to the l_her order stiffnm_ where it can be naturally scaled by using

J -- Ja, and even intermixe_ with FF contributions as Eq. 72 shows; and (b) the basic
stiffness of the element, derived separately, can be used to insure convergence.

10.3 Projectors and $/R Integration

The so-called "B-b_r s approach is based on expressing the element strains ass

where _, which cuts offthe "harmfulTM portionof B u, isconstructed by various ad-hoc

devices such as strain projection, selective and/or uniform reduced integration. These
time-honored schemes are well covered in Reg. 14. They are easily included _n the present

setting if _ admits the decomposition " -

where Q is not position dependent and • -- _v provides the mean strains, which are

discarded in favor of Eq. 76. This decomposition can be usually carried out in several

ways.

11. EXAMPLE: A 9-DOF ANDES PLATE BENDING TRIANGLE

The first element constructed with the ANDES formulation is a three-node Kh'chhoff

plate-bendlng fiat triangle with the usual nine degrees of freedom. The derivation is briefly

covered here ms it illustrates the essential steps in forming the higher order stiffness of such
elements. These steps are outlined in "recipe" form in Table 3. This Table restates the
arguments of §6.4 in z more physically oriented sense, which is closely aligned with the

terminologyof Rd. 19.

s This k a slight variation from the usual notation, necessitated by the ues of the single overbzr
to denote avar'4ge or me_n values.
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Table$ Construction of Kh by the ANDES Formulation
i

Step I. Select ve/e,_ li_a (in 2D element*) or ve/srence planes (in 3D
elements) where "natural straingage" locations are to be chosen. By appropriate

interpolation expre_ the element natural strah_ _v in terms of the %traingage

readings" g at throe locations:
= -'-. g, (80)

where 7 k • strain field in natural coordinates that mnst include all constant

strain states. (For bending element, the term "strains" is to be interpreted in •
generalised sen_, _. curvatures.)

Stzp P,. Relate the Cartesian strain- _ to the natural strains:

i -- T'l ffi TA,g = Ag (81)

at each point in the element. (If • i _, or if it is po_ible to work throughout in

natural coordlnates, this step k skipped.)

St_p & Split the Cartesian strain field into mean (volume-averaged) and devi-
a_oric strains:

where _ = (TA,)w/u, a_d_ed_W_ha__ mean xro value over Y. (This step
may also be carried out on the natural strains if T is constant, aJ is the case for

the element derived here.)

Step 4. Relate the natural straingage readings g to the visible degrees of
freedom

s = (s3)

where Q is • straingage-to-node displacement transformation matrix. Techniques
by which t]xis is accompl_hed vary from element to element and is circuit to state

rules that •pply to every situation. In the element derived here Q is constructed

by direct interpolation over the reference lines. (in general there is no internal

displacement field u" such that _ -- Du', m this step cannot be done by simply
integrating the field of Eq. 81 over the element and collocating u" at the nodes.)

Step 5. The higher-order stiffness matrix is given by

(S4)

where a > 0 is the scaling coefficient supplied by the functional of Eq. 38.

11.1 Geometric Relations

The triangle has stralqht aldes, rts geometry is completely defined by the location of

its three corners, which are labeled 1,2,3, moving counterclockwise. The triangle is referred
to a localCartesian system (z, Y) which is taken with origin at the centroid O, whence

the corner coorclin_es _, _ satisfy the relations =t + r_ + =s = 0 and Ys + Pz + _ --- 0.

CoordLuate _erences are abbreviated by writing _y = _ -- =$, etc. The signed triangle
area A is given by the formulae

2A _-- :r31Ysx -- Z31Y'_I _ :e39Y13 -- _12Y32 = _'13_72_ -- :_3_13, (ss)
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and we require that A > 0. We shall also ma]ce use of dimensionless triangular coordinates

_1, _2, _ linked by the constraint _1-t-_'2-F_3 = 1. The following we]] known relation be_tween

the area and centro_-or/_nated Cartesian coordinates of a str_ght-sided triangle k noted:

where i, 3"and k denote positive cyclic permutations of I, 2 and 3; for example, i = 2, 3" = 3,

k == 1. Therefore ag/_z = Vik/2A and ag/c_y = zj, i/2A. Other intrinsic dimensions and

ratios used beiow are

_ = _ + _j, _; = 2A/_, _,i = (_i-_. + _.)/_,, h, = _i - b,_,
(87)

where _i denote the triangle side lencth=, =_i are triancle heJchts, b_j- and bj-_ are projections

of sides i/_ and jk onto side i_', respectively, and the _'s are ratios of these projection= to

the side lengths.

11.2 Displacements_ Rotations_ S_e Coordinates

Since we are dealing with a KJrchhoff element, its displacement field is completely

defined by the transverse displacement to(=, g) -- to(_l, _, _), positive upwaz_. The mid-

plane rotations about = and y are e= = _w/c_y and e_ == -_to/_z. The vis_hle degrees of
freedom of the element collected in v are

vr=[_, P., e,, _= e,= e,_ =_ e._ e,=]. (ss)

Over the three sides 1-2, 2-3 and 3-1, traversed counterclockwise, we define the

dimensionless side coordinates PI_, _ and Pal as follows. Over side 1-2, Pl_ varies from

p_ = 0 at corner ! to _,_ == 1 at comer 2; thus pt_ m _ when _ = 0. Relations for the

other sides foUow from cyclic permutation of subecript,. Then

m _ m

apt= = z=l, _ "- z_=, 8Ps; == =x=,

11.3 Natural Curvatures

The second derivatives of _o with respect to the dimensionless side directions will

be called the nat=red ¢_r_ah=res and denoted by X_i = _w/a#_i" Note that they have
dimension= of dkpla=ement. The natural curvatures can be related to the Cartesian plate

curvatures_=, = a_/a=P, _ = a_t_/ay• =.,d _=,,= 2a_/a=a_, by cha_-rnleapp]Jta.

tion of FXl.. 89:

xl, o.=Ix=}= --,
The inverse of thk relation is

=$I :=31

= T-=.. (_o)

y-YZ2_23 + -T_2Z._32J

1911
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or, in matrix form

= Tx. - (92)

11.4 Curvature Sampling
i

The reference limes referred to in Table $ are the three triangle sides. The natural
curvature, are mmumed to vary I/nearly over each reference llne, an assumption which ;-
obviouJly consistent with cubic beamoli_e variations of to over the sides. A linear variation

on each side is determined by two straiagage sample points, which we chose to be at the
corners.

On ear.h triangle side chose the isopenmetric coordinates _i_" that vary from -1 at

corner i to +1 at corner j. These are related to the/_i coordinates as _i_"= 2_i- 1. Then
the natural curvature over side/3" is _ven by the beam formula

%. ,
0,,:.

where 0,, denote the rotation about the externaJ normal direction n on side iy. EvaJuating

these relations at the nodes by setting _t = -1-1 and converting normal rotations to z-y
rotations, we build the transformstion

't0x_

[i °°: 1, X=sI_ , : 0 0 -6 -4V_ 4=s2 6 -2_ 2:_ ' 0_2
X2s[s 0 0 0 6 2y_ -2=s= -6 4_,_ -4zs= |
X_x]s -2yls 2:xs 0 0 0 -6 -4yxs 4:xs | Or= [

- 4yxs -41_xs 0 0 0 -6 2yxs -2::xs J u_ ]Xsl Oss
q

!Oys
(04)

The left hand side is the nature] straingage reaAing vector called g in Table 3 and

m we can express th;J as the matrix relation

g = (gs)

11.5 Curvature Interpolation

The six zage readinp collected in g provide curvatures &long the 3 triangle sides

directions at two comm. But 9 values are needed to recover the complete curvature field
over the element. The 3 additional values are the n_ural curvaXures a_ the _ing eo_ er.
We obtain these values by adopting the following rule: Cylindrical b_ndinf toitA l{nearl_

ear_ing caveat#re _ong a side d{re©tlo_ _ to _e e=aetl_ represents& Another way of stating

this i_ that the side curvature X6 is to be constant adong lines normal to side i3". This makes
the element insensitive to bad aspect ratios on "strip bending" if each element has a side
oriented in the direction of the strip.

To apply thi, rule consider side 1-2. The natural curvature Xx_ = O_w/_tt_x_ along

this side is defined at nodes 1 and 2 by the first two rows of Eq. 94. )'or node 3 t_ke
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where,Xx2and,_oxaredefinedinEq.87.Sincewenow know the value= o[xx= = _2to/_#2x2

at the three corners we can use the standard linear interpolation over the entire tri%n_gle-

x_ - xx2lxrx+ xxs]=_ + x_[s_ = xx2[x(rx+,_xS_) + x_s[s(_ +,_=x_). (97)

Proceeding analogously for the other two sides we construct the matrix relation

(08)

or

x = Axe, x = TAxS. (99)

Since T is constant we can do Step 3 of Table 3 directly on the natural curvatures.

Now Ax(s'l,_,_3 ) is a l;nzar function of the triangular coordinates. Consequently, the

mean natural curvatures can be simply obtained bI evaluating A__at the centroid _x =
= _ = 1/3. Let the corresponding matrix be A x. Then _ = AxE, and the natural

deviatoric curv_ures are given by

x, = (A,,- X_)s,
which transformed to devintoric Cartesian curvatures Jz_ : _ - _ gives finally

-.,,= T(+.x- X_)s= +-,,s.

(1oo)

(lOl)

11.6 The Element Stiffness Matrix

The bealc stiffness matrix Ks i_ the same derived in Ref. S using the conventional

FF and need not be rederived here. The higher order stifrneu matrix is given by F_ls. 84,
which for a plate bending element specialise to

K. = .QTK.Q = _q_ [/x A_DA_ _4]. , (102)

where D is the Cartesian moment_urvature constitutive matrix resultinZ from the inte-

gration of E through the plate thlckne_s:

m= = |Dx= D_= D_ ,.,., =D_. (103)

Since A_ varieslinearly,_ D isconstant we could numerica_y _-tegrateK_ in

Eq. 102 exactly with a three point Gauss rule, for example the three midpoint formula.

But as the formation of the element ati_neu is dominated by these calculatious it is of
interest to derive F_ in closed form. Such a derivation is provided in Rd. 17.

11.7 ,Preliminary Evaluation

As of this writing only a sketchy evaluation of the first ANDES element is available.
We have found that for triangles with good upect ratio its behavior is similar to tha_ of

the scaled FF element of Ref. 8, which is known to be an excellent performer. But the
• ANDE_ element shows less c_stortion sensitivity for high _spect ratio elements, as can be

expected from its construction. Additional evaluation details will be reported in Ref. 17.

These preliminary results are encouraging in that we now have two good stand-alone

components (FF and ANDES) of Ka. Thus it is plausible that a weighted mix of these
formulations as per F_1. 72 can be used to squeese the ultimate in performance for this very
simpk element.
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- - 12. CONCLUSIONS

Theresultspresentedin this paper may be summar/sed as follows.

1. The classical variational principles d linear elasticity may be embedded in a

parametrised matrix form.
2. The elastlciW principles with independently varied displacements are members of

a three-parameter family. Those principles without independent displacements are
members of a one-parameter family.

3. Finite element assumptions for constructing hlgh-performance elements may be con-

veniently investigated on thk family using hybrid forcing potential.

4. Kinematic constraints established outside the realm of the variational principle may

be incorporated through Lagrange multiplier adjunction.

5. The FF and ANS methodm for constructing HP finite elements may be presented

within this augmented variational setting. A variant of ANS, called ANDES, fits nat-

ural]y the decomp_ition of the stiffness equations into basic and higher order parts.
In addition, combined FF/ANDE$ forms emerge from the general parametrJzed

principle.

6. The satlsfaction of the individual element test yields various orthogonallty conditions
that the kinematic constraints should satiafy a pviov_

7. The first ANDES element based on t]_ formulation displays encouraging stand-

alone performance as regards distortion sensitivity. The weighted combination of
this element with its FF counterpart remains a topic for further investigation.
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